TI-*nspire*

Etude d'une loi binomiale avec le TInspire

Soit *X* une variable aléatoire. On suppose que *X* suit une loi binomiale de paramètre p = 0,4 et n = 10.

(On note aussi $X \sim B(10; 0, 4)$)

1°) Déterminer la loi de probabilité de *X*.

2°) Déterminer l'expression de *F*, la fonction de répartition de *X* puis représenter graphiquement *F*.

3°) Calculer l'espérance de X.

4°) Calculer l'écart type de X.

1°) Déterminer la loi de probabilité de X.

X est une variable aléatoire qui suit une loi binomiale de paramètre n = 10 et p = 0,4.

La TI*n*spire permet de calculer directement les valeurs de $p(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ (pour $0 \le k \le n$) et de dresser la loi de probabilité de *X* :

La valeur de p(X = k) est obtenue

- Soit en tapant directement la commande binomPdf(10,0.4, *k*).
- Soit en tapant (men) Probabilité |
 Distributions | Binomiale DdP et en complétant la boite de dialogue.

binomPdf(10,0.4, **0**) correspond à $p(X = \mathbf{0})$ binomPdf(10,0.4, **1**) correspond à $p(X = \mathbf{1})$

binomPdf(10,0.4, **10**) correspond à p(X = 10)

1.1 1.2 1.3	RAD AUTO RÉEL	
binomPdf(10,0.4,0)	0.006047	
binomPdf(10,0.4,1)	0.040311	
binomPdf(10,0.4,10)	0.000105	
	3/8	,9 I

TI-*nspire*™

Probabilités| Loi binomiale

Si on tape seulement binomPdf(10, 0. 4) on
obtient la liste de toutes les valeurs de $p(X = k)$
pour $0 \le k \le n$:

1.1 1.2 1.3	RAD AUTO RÉEL
binomPdf(10,0.4,0)	0.006047
binomPdf(10,0.4,1)	0.040311
binomPdf(10,0.4,10)	0.000105
binomPdf(10,0.4)	
{0.006047,0.040311	,0.120932,0.214991,0.2
	4/99

On peut aussi afficher toutes ces valeurs directement dans le tableur, ce qui nous donnera la loi de probabilité de *X* :

Dans la colonne A on entre = seq(i, i, 0, 10) pour avoir toutes les valeurs de 0 à 10.

Dans la colonne B on entre = binomPdf(10,0.4)

	1.1 1.2 1.3 RAD AUTO RÉEL		
	A	В	
٠	=seq(i,i,0,10)	=binompdf(10,0.4)	
1	0	0.006047	
2	1	0.040311	
3	2	0.120932	
4	3	0.214991	
5	4	0.250823	
2	3 =binompdf(10,0.4)	

TI-*nspire*

2°) Déterminer l'expression de F, la fonction de répartition de X puis représenter graphiquement F.

On va calculer $p(X \le k)$:

...

Pour calculer une valeur de la fonction de répartition de *X*, c'est-à-dire $p(X \le k)$ on peut :

- Soit taper directement la commande binomCdf(10,0.4, *k*).
- Soit en tapant menu Probabilité |
 Distributions | Binomiale FdR et en complétant la boite de dialogue.

binomCdf(10,0.4, **0**) correspond à $p(X \le \mathbf{0})$ binomCdf(10,0.4, **1**) correspond à $p(X \le \mathbf{1})$

binomCdf(10,0.4, **10**) correspond à $p(X \le 10)$

Si on tape seulement **binomCdf**(10, 0. 4) on obtient la liste de toutes les valeurs de $p(X \le k)$

pour $0 \le k \le n$ (ici n = 10):

RAD AUTO RÉEL	Î
0.006047	
0.046357	
1.	
3/	99 99
	RAD AUTO RÉEL 0.006047 0.046357 1. 3/

ĺ	1.1 1.2 1.3 RAD AUTO RÉEL					
	A	В		С		
٠	=seq((=binom	pdf(10,0.4)	=bino	mcdf(10,0.4)	
1	0		0.006047		0.006047	
2	1		0.040311		0.046357	
3	2		0.120932		0.16729	
4	3		0.214991		0.382281	
5	4		0.250823		0.633103	∣⊔
	C =binomcdf(10,0.4)					

On peut compléter note feuille de calcul en entrant dans la colonne C :

= binomCdf(10, 0.4)

On peut aussi calculer $p(a \le X \le b)$, par exemple si on souhaite obtenir la valeur de $p(2 \le X \le 6)$ on entre **binomCdf**(**10**, **0**. **4**, **2**, **6**) :

binomCdf(10,0.4,2,6) 0.898881

TI-*nspire*™

Représentation graphique de la fonction de répartition F.

3°) Calculer l'espérance de X.

D'après le cours, le calcul d'espérance de X est simple puisque E(X) = np.

Cependant, on peut aussi la calculer en utilisant la définition de *E* :

$$E(X) = \sum_{k=0}^{n} k \times p(X = k)$$

Dans les deux cas on trouve 4.

⊺I-*nspire*™

4°) Calculer l'écart type de X.

D'après le cours, on sait que $V(X) = \sqrt{np(1-p)}$. Cependant, on peut aussi la calculer en utilisant la définition de V:

$$V(X) = \sqrt{\sum_{k=0}^{n} p(X=k) \times (k - E(X))^2}$$

Dans les deux cas on trouve le même résultat..

1.1 1.2 1.3	RAD AUTO RÉEL
$ \begin{bmatrix} 10 \\ k=0 \end{bmatrix} $ (binomPdf)	$(10,0.4,k)\cdot(k-4)^2$
	1.54919
$\sqrt{10.0.4.(1-0.4)}$	1.54919
	2/99

TI-*nspire*

COMPLEMENT

Représentation graphique

Il peut être intéressant de représenter graphiquement le nuage de points (k, p(X = k)) pour $0 \le k \le n$ pour visualiser graphiquement la convergence de la loi binomiale vers la loi normale.

En reprenant la loi de *X* obtenue dans la feuille de calcul précédente, on nomme *x* et *y* respectivement les colonnes *A* et *B*, puis dans une nouvelle feuille Graphique & Géométrie on affiche le nuage de points (*x*, *y*).

◀	4.1 4.2 5.	1 5.2 RAI	D AUTO RÉE	EL 🗎	4.1 4.2 4.	.3 5.1 RAD	AUTO RÉE	EL 🗎
	Ax	₿y	С			≜ y		
٠	=seq(i,i,0,10	=binompdf(*	=binomcdf(⁻			Î		
1	0	0.006047	0.006047					
2	1	0.040311	0.046357			1		x
3	2	0.120932	0.16729			ļx,j	γ	
4	3	0.214991	0.382281			ļ		
5	4	0.250823	0.633103					
Ì	3 y				$\circledast \blacksquare sI = x \in [$	х 🔻 У	¥γ ■	> ×

Il faut modifier l'affichage de la fenêtre pour obtenir un graphique satisfaisant :

⊺I-*nspire*™

Convergence vers la loi normale

Afin de visualiser la convergence de la loi binomiale vers la loi normale il faut modifier un peu la feuille de calculs précédente :

Pour modifier les valeurs de n sur le graphique, il faut :

- insérer un curseur (on a choisit 20 pour valeur minimale, 20 pour l'incrémentation et 200 pour valeur maximale de *n*)

Puis pour modifier automatiquement l'échelle du graphique, il faut :

- Afficher les valeurs extrêmes des axes (men) | Affichage | Afficher les valeurs extrêmes des axes)
- Lier la valeur maximale de *x* à la variable *n*
- Lier la valeur maximale de *y* à la variable *maximum*.
- Entrer -1 pour valeur minimale de *x*.
- Entrer 0 pour valeur minimale de *y*.

Pour incrémenter les valeurs de n de 20 en 20, il faut utiliser la flèche de direction \rightarrow

On remarque que la loi binomiale ressemble à une loi normale.

On sait d'après le cours que lorsque *n* tends vers l'infinie et que *p* et 1 - p sont de même ordre de grandeur (dans la pratique lorsque n > 30, np > 5 et n(1 - p) > 5) alors la loi B(n, p) converge vers la loi normale de paramètre m = np et $\sigma = \sqrt{n \times p \times (1 - p)}$. Appelons *Y* cette loi normale.

On va représenter graphiquement les 2 nuages de points suivants :

Nuage n°1 : $(k, p(X = k)), 0 \le k \le n$ (comme précédemment)

Nuage n°2 : $\left(k, p\left(k - \frac{1}{2} \le Y \le k + \frac{1}{2}\right)\right) 0 \le k \le n$

TI-*nspire*

On doit créer une fonction afin de calculer les valeurs de $p\left(k - \frac{1}{2} \le Y \le k + \frac{1}{2}\right)$ dans une colonne (car la taille de la colonne doit varier en fonction de *n*).

⊺I-*nspire*™

On entre le programme suivant :

"loinormale" enregistrement effectué

Define **loinormale**()= Func Local *i*,*loi loi*:={[]} For *i*,0,*n loi*:=augment $\left(loi, \left\{normCdf\left(i-\frac{1}{2},i+\frac{1}{2},n\cdot0.4,\sqrt{n\cdot0.4\cdot0.6}\right)\right\}\right)$ EndFor Return *loi*

EndFunc

Et dans le tableur, on a choisit la colonne *E* pour entrer les résultats de notre fonction *loinormale*

On a nommé cette colonne **normale**.

ĺ	1.	1.1 1.2 1.3 RAD AUTO RÉEL 🗍					
	l _y			С	D	E normale	^
٠	binompdf('n,0.4)					=loinormale	
1	0.000037		maxi	0.179	0.000257		
2		0.	.000487	n	20	0.001195	
3	0.003087				0.004525		
4	0.01235				0.01396		
5		0.	.034991			0.035085 (⊻
1	E normale:=loinormale()						

On représente graphiquement le nuage de points (*x*, *normale*) qui correspond à

 $\left(k, p\left(k-\frac{1}{2} \le Y \le k+\frac{1}{2}\right)\right)$. On a choisit de relier ce nuage de points pour le distinguer du précédent.

TI-*nspire*™

On peut donc mieux visualiser le phénomène de convergence de la loi binomiale vers la loi normale.